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Quantum logics with continuous superselection rules are shown to be Boolean- 
valued coherent quantum logics, Since modern set theory provides a transfer 
principle from standard mathematics to Boolean-valued mathematics, this makes 
it possible to transfer automatically well-known results on coherent quantum 
logics to quantum logics with continuous superseleetion rules. Many illustrations 
are given. 

1. I N T R O D U C T I O N  

Without  any superselection rules nonrelativistic quantum mechanics is 
expected to be described by a separable infinite-dimensional Hilbert space 
over the real numbers R, the complex numbers C, or the quaternions Q. 
There the propositions correspond to closed subspaces, or equivalently to 
projections. Observables are represented by self-adjoint operators, and states 
are in bijective correspondence with von Neumann  operators of  unit trace. 
Any automorphism of  the propositions is induced by a symmetry, and so 
forth. 

F rom a lattice-theoretic viewpoint the propositions in the above situa- 
tion form at least an irreducible complete or thomodular  orthocomplemented 
A C-lattice. By a "coherent quantum logic" in the title o f  this paper we mean 
such a lattice. 

I t  can be said without exaggeration that quantum mechanics with super- 
selection rules is the rule rather than the exception. This is particularly so in 
the context of  measurements of  a quantum system, where we must consider 
the composition of a quantum system with a classical system. Indeed, as 
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Araki (1980) has demonstrated, the notion of a continuous superselection 
rule lies at the core of Machida and Namiki's (1980) theory of measurement. 
In such a situation the lattice of propositions is not necessarily even 
atomistic. 

If the superselection rule is discrete, the quantum system decomposes 
into coherent subsystems, so that the analysis of the system is reducible to 
the coherent case. What we would like to show in this paper is that the 
analysis of quantum logics with continuous superselection rules is also reduc- 
ible to that of coherent quantum logics, though the discussion is much 
subtler than the discrete case. 

The organization of this paper is as follows. In Section 2 we review the 
rudiments of modern set theory which are requisite for our later discussions. 
In Section 3 we show that quantum logics with continuous superselection 
rules are no other than Boolean-valued coherent quantum logics, which 
enables us to establish a coordinatization theorem for reducible quantum 
logics in Section 4. There the theory of A W*-modules invented by Kaplan- 
sky (1953) naturally enters, since A W*-modules are no other than Boolean- 
valued complex Hilbert spaces, as Ozawa (1984) has demonstrated. In Sec- 
tion 5, just as an operator trace was introduced as a generalization of a trace 
in the theory of von Neumann algebras, we generalize the notions of an 
observable and a state, and establish their fundamental theorems, including a 
generalization of Gleason's theorem to the reducible case, by using Boolean- 
valued techniques. For other applications of Boolean-valued techniques to 
mathematics, the reader is referred to Nishimura (1984, 1991), Ozawa 
(1983, 1984, 1985, 1986), Smith (1984), and Takeuti (1978, 1983), and 
Takeuti and Zaring (1973). 

2. BOOLEAN-VALUED SET THEORY 

Let B be a complete Boolean algebra, which shall be fixed throughout 
the rest of the paper. We define V~ B) by transfinite induction on ordinal a 
as follows: 

V(o n) = ~ (2. l) 

V~)={ulu:@(u)~Band@(u)cU~<~ V~ B)} (2.2) 

Then the Boolean-valued universe V (m of Scott and Solovay is defined 
as follows: 

v ~)= U v~ ~ 
u e O n  
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where On is the class of  all ordinal numbers. The class V (B) can be considered 
to be a Boolean-valued model of set theory by defining [uev] and [u=  v-~ 
for u, w V (m with simultaneous induction 

l[ueo]] = sup (v(y) ^ [u=y]]) (2.3) 
y E ~ ( v )  

~u=v]]= inf (u(x)--*~xev]])^ inf (v(y)--*[yeu~) (2.4) 
x ~ ( u )  ),E~(U) 

and by assigning a Boolean value [[a]] to each formula a without free vari- 
ables inductively as follows: 

I1-  all = [ a ]  l (2.5) 
~a, v a2~ = [[a,]] v [[a2~ (2.6) 

~a, ^ a2]} = [[a,]] ̂  [a2] (2.7) 

[Vx a(x)~ = inf [a(u)~ (2.8) 
ue VB 

[3x a(x)~ = sup n-a(u)] (2.9) 
ue VB 

The following theorem is fundamental to Boolean-valued analysis. 

Theorem 2.1. If  a is a theorem of ZFC, then so is [a~ = 1. 

The class Vof all sets can be embedded into V (m by transfinite induction 
as follows: 

) =  {(5c, 1) txey} 

For x, y e  V, we have: 

if xey  

otherwise 

if x = y  

otherwise 

for y~ V 

Proposition 2.2. 

A subset {e~}~^ of B is called apartition of unity if supz~^ e~= 1 and 
e~^e~,=0 for any Z r  Given a partition of unity {e~}z~^ and a family 
{u~}~^ of elements of V (~), one can easily prove the following result. 

Theorem 2.3. There exists an element u of V m) such that [u= u~-n > e~ 
for any a. Furthermore, this u is determined uniquely in the sense that 
[u =v]] = 1 for any ve V (B) with the above property. 

The above u is denoted by Y]~ u~e~. 



858 Nishimura 

We define the interpretation X (B) of X =  {xl~x)} with respect to V (B) 
to be {ueV(a)l[(o(u)]=l}, assuming that it is not empty. By way of 
example, N ca), Z(a), R(B), and C (n) stand for the totalities of natural num- 
bers, integers, real numbers, and complex numbers in V (a), respectively. We 
often identify x e C  with 3"ceC (n). 

For technical convenience, if X is a set, then X (a) is usually consid- 
ered to be a set by choosing a representative from an equivalence 
class {veV(a)livu=v~=l}. Then we have X(s) x {1}eV (a) and 
[x=x(a) • {1}]1=1. 

Let D c V  (a). A function g: D ~  V (a) is called extensional if 
[d=d'~<{g(d)=g(d')~ for any d, d'eD. We say that ue V (a) is definite if 
u (d)=  1 for any de~(u). Then we have the following characterization 
theorem of extensional maps. 

Theorem 2.4. Let u, ve V (~) be definite and D=@(u).  Then there is a 
bijective correspondence between h e V (B) satisfying Ivh: u ~ v-n = 1 and exten- 
sional maps q~: D ~ 0, where t3 = {ul [[ue v] = 1}. The correspondence is given 
by the relation {h(d) = ~0(d)~ = 1 for any deD. 

A set S with a binary B-valued relation IF" =" ]] is called a B-set if for 
any x, y, zeS we have 

~x=x~ = 1 (2.10) 

[x=y]=~y=x~ (2.11) 

I[x =y]] ^ IVy = z]] < ~x = z-~ (2.12) 

Given a B-set S, we denote by S the quotient set of ~ with respect to 
the equivalence relation {((x, y ) ,  ~x=y~)lx, yeS}  in V (n). For any xeS, 
we denote by ~ the equivalence class of ~ with respect to the equivalence 
relation. Given ue V (a), we denote by ~ the set {re V(a)l~veu~ = 1}, which 
is considered to be a B-set by choosing representatives. 

A B-set is called separated if for any x, yeS, ~x=y~ = 1 implies x=y. 
A B-set S is called saturated if for any partition {b~}~t of unity of B and any 
family {x~}~r~S, there exists xeS  such that bi<l[x=x~ for any ieL A B- 
set S is called complete if it is separated and saturated. For any complete B- 
set S, we can naturally identify S with S. For any nonempty set u in V (a), 
t~ is a complete B-set, and we can naturally identify k with u. 

A subset T of a B-set is called a B-subset of S if for any xeS, whenever 
there exist a partition {e~}~A of unity of B and a family {Y~}~A of elements 
of Tsuch that [x=y~]l>ez for any A.eA, we have xeT. A B-subset T o f  the 
B-set S is naturally a B-set, and if S is separated, saturated, or complete, then 
T is so correspondingly. The function T ~ T gives a bijective correspondence 
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between the nonempty B-subsets of S and the nonempty subsets of 
in V ~B). 

Given two B-sets S and T, a function q~: S--, T is called a B-function if 
for any x, y e S ,  ~x=y~ <_ [ ~ x ) =  q~(y)~. This definition can be extended to 
n-ary functions for any natural number n. If ~: S ~  T is a B-function, then 
there exists a unique function r ,~--, 2?in V <n) such that [q3($)= (q~(x))'~ = 
1. For any function ~: u --, v in V <n), we denote by ~ the B-function from 

to ~ such that for any xe~,  ~(x) is the representative of the class 
{ w e V (ml[w = V(x)]] = 1}. If  S and T are complete and if we identify S and 

T with ~ and ~ respectively, then ~p ~ ~ gives a bijective correspondence 
between the B-functions from S to T and the functions from g to 2? in 
V <n) with the inverse ~ ~ ~. 

Given a B-set S, the totality S~ of families {(x~, eX)}~A for all 
partitions {e~}~a of unity of  B and all families {xx}x~A of elements of S 
becomes a complete B-set, provided that we define 

~{(X;~, ex)},~eA = {(Ya,A)}a~a]] = sup{[[xz=Ya] h ex AA]AeA, 5cA} 

for {(x~, ez)}a~A, { (ya , f , ) }a~AeS~ 

and  we agree  to identify {(xz, e~)}z~A and {(Ya,fa)}e~A if [{(x~, e~)}~^,  
{(ye,fa)}e~a] = 1, i.e., if [.xz, y ~ > e z h f e  for any A.eA and any 6 c a .  If s 
is separated, then S can naturally be regarded as a B-subset of S~.  S and 

S~ can naturally be identified. S~ and ~ can naturally be identified. A B- 
function ~p from a B-set S to another B-set T naturally induces a B-function 
~p~ from Soo to T~o, and ~ and ~ can naturally be identified. 

The considerations on B-sets in this section can be generalized easily to 
include algebraic structures, so long as algebraic operations are decreed by 
B-functions. 

3. QUANTUM LOGICS WITH CONTINUOUS 
SUPERSELECTION RULES 

The techniques of Nishimura (1984) can be used to establish the results 
of this section, so their proofs are omitted. 

An orthocomplemented lattice 5e is called a B-orthocomplemented B- 
lattice if it satisfies the following conditions: 

1. B is an orthosublattice of the center Z(~9 ~ of Za. 
2. For any partition {ez}~n of unity of B and any family {az}z~^ of 

elements of ~q' there exists unique aeA a such that a h ez=a ,  h ex for 
all s  

3. For  any a, b e ~  and any eeB, if a h e = b h e ,  then a •  • he.  
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In this case ~ can naturally be regarded as a B-set by defining [a = b~ = 
sup{eeBla^e=b^e}  for a, b e ~  a. By Condition 2 we can see easily that 
a A [a=b~ =b A ~a=b-~. Regarding Z,o as a B-set, we see that the lattice 
operations A and v and the orthocomplementation _L are B-functions. 

Let ~ and ~ "  be B-orthocomplemented B-lattices. An orthohomo- 
morphism of the orthocomplemented lattice ~ into the orthocomplemented 
lattice La' is called a B-orthohomomorphism of ~ into ~ '  if it induces 
the identity transformation on B. Similarly, an orthoisomorphism of the 
orthocomplemented lattice La onto the orthocomplemented lattice ~e' is 
called a B-orthoisomorphism of ~ onto Se' if it induces the identity trans- 
formation on B. If  there exists a B-orthoisomorphism of La onto ~ ' ,  then 
they are said to be B-orthoisomorphic. 

Proposition 3.1. (1) For any B-orthocomplemented B-lattice ~ ,  ~ is 
an orthocomplemented lattice in V ~B), which gives a bijective correspondence 
between the B-orthoisomorphism classes of orthocomplemented B-lattices 
and the orthoisomorphism classes of orthocomplemented lattices in V ~n). 

(2) For any B-orthohomomorphism tp of a B-orthocomplemented B- 
lattice ~ into a B-orthocomplemented B-lattice ~ ' ,  ~ is an orthohomo- 
morphism of ~ into ~ ' ,  which gives a bijective correspondence between 
the B-orthohomomorphisms of ~ into ~ '  and the orthohomomorphisms 
of ~ into ~ '  in V ~n). 

Throughout the rest of this section a B-orthocomplemented B-lattice Z~' 
shall be fixed. 

Proposition 3.2. he is orthomodular iff ~ is orthomodular in V <n). 

Proposition 3.3. ~ is complete (a-complete) iff L~ is complete (a-com- 
plete) in V ~B). 

An element p of a lattice Le with 0 is called a quasiatom if it is an atom 
or 0. An element p of ~ is called a B-quasiatom if for any a e ~  such that 
a <p,  there exists e eB such that e ^ a = e ^p  and e•  a = 0. ~ is said to be 
B-atomistic if every element a of ~ is the join of all B-quasiatoms p such 
that p < a. 

Lemma 3.4. p ~  is a B-quasiatom of ~e iffff is a quasiatom of 
in V t~). 

Proposition 3.5. ~ is B-atomistic iff ~ is atomistic in V (B~. 

is said to enjoy the B-covering property if for any B-quasiatom p of 
and any aE& v we have (p, a)M, where (p, a)M means that (p, a) is a 

modular pair. 
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Proposition 3.6. ~ enjoys the B-covering property iff ~ enjoys the 
covering property in V <B). 

If  the B-orthocomplemented B-lattice Ae is B-atomistic and enjoys the 
B-covering property, then A ~ is called a B-orthocomplemented B-A C-lattice. 

A a is said to be B-irreducible if Z(Ae)= B. As in Theorems 4.9 and 4.14 
of  Nishimura (1984), we have 

Proposition 3. 7. Ae is B-irreducible iff ,~ is irreducible in V ~B). 

Let n be a natural number. A lattice Ae with 0 is said to be of length 
_> n if there exist n elements a~ . . . .  , an such that 0 < a~ < .  �9 �9 < an. The lattice 

is said to be of B-length >n  if there exist n elements al ,  � 9  an such that 
O<e ^a~ <. �9 . < e  Aa~ for any nonzero e~B. 

Proposition 3.8. For a natural number n, L,e is of B-length >n  iff ~ is 
of  length n in V ~n). 

An irreducible orthomodular complete orthocomplemented A C-lattice 
is called a CQL ("coherent quantum logic"). A B-irreducible orthomodular 
complete B-orthocomplemented B-AC-lattice is called a B-QLsr (quantum 
logic with superselection rule B). The preceding results give at once the 
following theorem. 

Theorem 3.9. For any B-QL~ A ~ L~ is a CQL in V ~n), which gives a 
bijective correspondence between the B-orthoisomorphism classes of  B- 
QL~/s and the orthoisomorphism classes of  CQLs in V ~B). 

4. STANDARD QUANTUM LOGICS WITH CONTINUOUS 
SUPERSELECTION RULES 

The results of  this section can be established by using the techniques of  
Nishimura (1984, 1991), so their proofs are omitted. 

In this section a ring always means a ring with unity 1. A ,-ring is a 
ring q /endowed with a unary operation �9 such that for any x, y ~ ,  x** = 
x, (x + y ) * =  x* +y*,  and (xy)* = y ' x * .  An element x of  a ,-ring ~' is called 
a projection if it is idempotent and self-adjoint, i.e., x 2 = x and x* = x. It is 
well known that the central projections of a ,-ring ql form a Boolean algebra, 
which we denote by B ( ~ ) .  A ,-ring q/ is  called a B-,-ring if it satisfies the 
following conditions: 

1. B is an orthosublattice of  B(q/). 
2. For  any partition {ez}z~^ of  unity of  B and any family {xx}~A of 

elements of ~' there exists unique x ~  such that ezx = e~xz for all 
A,~A. 
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A B-,-ring q /can  be regarded as a B-set by defining Ix = y]] = sup{eeBlex = 
ey} for x, yeq/ .  Two B-,-rings og and #/ '  are called isomorphic if there exists 
a ,-isomorphism of  q / o n t o  ~ '  inducing the identity transformation on B. 

Proposition 4.1. If  q / i s  a B-,-ring, then ~ is a ,-ring in V ~B), which 
induces a bijective correspondence between the isomorphism classes of B- , -  
rings and the isomorphism classes of  ,-rings in V tn). 

A B-,-ring q/ is called B-division if any principal left ideal of q/ is 
generated by some element of  B. If B consists only of 0 and 1, the notion of  
a B-division B-,-ring degenerates into that of  a division ,-ring. 

Proposition 4.2. A B-,-ring q / i s  B-division iff ~ is a division ,-ring 
in V <B). 

Let q / b e  a B-,-ring. A module ~ over q/ is  called a B-module over q/ 
if for any partition {ex} ~ ^  of unity of  B and any family {xx}z~A of elements 
of  ~ '  there exists unique x e ~ '  such that e~x= ezxx for all &sA. A B-module 
~ '  over q / c a n  be regarded as a B-set by defining ~x=y]=sup{e~Blex= 
ey} for x, yE~Cg. 

Proposition 4.3. Let q/ be a B-division B-,-ring. If Jg is a B-module 
over q/, then ~ is a linear space over q~, which gives rise to a bijective 
correspondence between the isomorphism classes of B-modules over q / a n d  
the isomorphism classes of  linear spaces over q7 in V <B). 

Let Jr' be a B-module over a B-,-ring q/. An element x of . g  is called 
B-nonzero if, for any e~B, ex=O implies e=0 .  J / i s  said to be B-nonzero if 
it has a B-nonzero element. It is easy to see that an element x of ~ '  is B- 
nonzero iff ff is nonzero in V ~B), and that J / / is  B-nonzero iff ~/7 is nonzero 
in V ~n). A submodule Jff of J / / i s  called a B-submodule of ~ / i f  Jff is a B- 
subset of ~t'. 

Proposition 4.4. Let J / /be  a B-module over a B-division B-,-ring ql. If  
Jff is a B-submodule of J//', then ~A~ can be regarded naturally as a linear 
subspace of ~7 in V ~n), which gives rise to a bijective correspondence 
between the B-submodules of ~ '  and the linear subspaces of  ~ in V ~n). 

Let Jg be a B-module over a B-division B-,-ring q/. Then a function 
( . , .  ~: J / / •  ~ '  ~ q/ is  called a Hermitianform if for any aj ,  a2eOg and any 
xl ,  x2, ye.At', 

(alxl + a2x2, y )  = al (x l ,  y )  + a2(x2, y )  

(y, x )  = (x, y )  * 

(y,  y )  = 0 implies y = 0 

(4.1) 

(4.2) 

(4.3) 
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Proposition 4.5. Let Jr' be a B-module over a B-division B-,-ring ~ .  
I f  ( ' , ' )  is a Hermitian form on .// ,  then ( . , -  ~ is a Hermitian form on 
the linear space ~ over ~ in V (n~, which gives riseto a bijective correspond- 
ence between the Hermitian forms on ~ /  and the Hermitian forms on 

in V (~). 

Let 0//be a B-,-ring. Let ~ be a B-module over q /wi th  a Hermifian 
form ( . , . ) .  For any subset X of J / l e t  

X • = {yEJgl (y,  x )  =0  for any xeX} 

A subset X of  Jg is called orthoclosed i f X  •177 =X. It is easy to see that an 
orthoclosed subset of . / / i s  always a B-submodule. We denote by Lo~(~g) 
the totality of orthoclosed subsets of Jr'. If  B consists only of 0 and 1, these 
considerations degenerate into the well-known case considered, e.g., by 
Maeda and Maeda (1970, Section 34). 

Let Jg  be a B-nonzero B-module over a B-division B-,-ring q/with a 
Hermitian form ( - , . ) .  Then we have 

Theorem 4.6. Loc(~g) endowed with the set-theoretic inclusion as its 
partial ordering and the operation XELo~(Jg)~-~X �9 as its orthocomplemen- 
tation is a B-irreducible complete orthocomplemented B-AC-lattice, where 
e e B is identified with {x ~ ~r (1 - e)x = 0}. We have (Lo~(~g))" as orthoiso- 
morphic to the orthocomplemented lattice Lo~(~ ) of orthoclosed subspaces 
of the linear space ~/7 with respect to the Hermitian form ( . ,  �9 )- in V (n). 

Conversely we have the following result. 

Theorem 4.7. Let L~' be a B-irreducible complete orthocomplemented 
B-A C-lattice of B-length _>4. Then there exists a B-nonzero B-module over 
a B-division B-,-ring q/ with a Hermitian form ( . , . )  such that ~ is B- 
orthoisomorphic to Loc(~g). 

Let d be a commutative A W*-algebra whose complete Boolean algebra 
of  projections is B. We fix d throughout the rest of this section, d can be 
regarded as a B-set by defining [a=b]=sup{eeBlea=eb} for a,b~d.  
Ozawa (1984) has shown that ~7 can be identified with the set of complex 
numbers in V (a). doo is a B-division B-,-ring by proposition 4.2. A sequence 
{at}~N of elements of d is said to B-converge to ae~r written 
- (B) hmj_,o~ at=a, if for any e>0 ,  there exists a partition {ei}i~N of unity of B 

such that whenever j > i ,  [le~aj-eia[I < e. It is easy to see that the sequence 
{a/};~N B-converges to a iff its corresponding sequence in V (n) converges to 

in V (n). If  the derived sequence {~7=J a;},~N B-converges to a e d ,  then we 
say that v(B) a,. converges to a. 

�9 " q ~  N 
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A module ~ over d is called apre-A W*-module over d if it is endowed 
with a binary function ( . ,  . )  : ~ x ~ '  - .  d such that the following hold for 
any a, be~r and any x, yeJr 

1. (alxl +a2x2, y)=al(x l ,  y)+a2(x2, y) for any al, a2e~ and any 
Xl, x2, y ~ J t .  

2. (y, x)  = (x, y )  * for any x, yeJ t ' .  
3. (x, x)_>0 for any x ~ ,  and the equality holds only if x=0 .  
4. For any partition {ex)~A of unity of B and any family {x~}x~^ of 

elements of J / w i t h  supz~A(X~, X).) < + ~ ,  there exists unique x~J/ /  
such that e~x= exxx for any X~A. 

A pre-A W*-module J / o v e r  d is called an A W*-module over d if Jr' is 
complete with respect to the norm I[x]l = [I (x, x)[I 1/2 (xe J//). 

Let J / b e  a pre-A W*-module over the commutative A W*-algebra d 
with an inner product ( . ,  �9 ) taking values in ~r One can regard ~ / a s  a B- 
set by defining 

[[x=y~=sup{e~Blex=ey} for x , y ~ / l  

Ozawa (1984) has shown that off is a complex pre-Hiibert space in V ~n~, 
that every complex pre-Hilbert space in V <n) can be obtained in this way up 
to isomorphism, and that ~ is a complex Hilbert space in V m) iff Jr' is an 
A W*-module. The discussion preceding Theorem 4.6 is applicable to ~ '  
with due modifications, and we have the B-orthocomplemented B-lattice 
Loc(Jg). It is easy to see that Lo~(~[) is B-orthoisomorphic to Lo~(~r 
where we note that ~t'~ is a B-module over the B-division B-,-ring sr and 
the inner product on J// naturally induces a Hermitian form on J / |  Thus 
Theorem 4.6 implies that Lo~(J[) is a B-irreducible complete B-orthocomple- 
mented B-A C-lattice, so long as ~r B-nonzero in the same sense as defined 
for B-modules over B-,-rings. By transferring Amemiya and Araki's (1966) 
theorem to V (B~, we have the following result. 

Theorem 4.8. Lo~(Jr is orthomodular iff Jr' is an A W*-module. 

Let ~ / b e  an A W*-module over ~r A submodule X of Jr / is  called a 
B-submodule of ~ if JV is a B-subset of ~g. A B-submodule JV of ./t' is 
called an A W*-submodule of Jr' if ~V is an A W*-module with respect to the 
inherited inner product. It is easy to see that the function X ~ ~7 gives a 
bijective correspondence between the B-submodules of ~r and the linear 
subspaces of ~ in V (~), under which ~/" is an A W*-submodule iff ~7~ is a 
subspace of J / i n  V ~m. Since the intersection of any family of A W*-submod- 
ules of ~ '  is again an A W*-submodule, any subset of ~ / h a s  the minimal 
A W*-submodule that contains ~t'. In particular, a submodule ~V" of  M r is 
said to be B-dense if the minimal A W*-submodule containing ~ is ~/g itself. 
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In this paper, by an operator T on Jr', we mean a module homomorphism 
from a B-dense submodule ~ ( T )  of ~g into .,/4'. An operator T is called 
symmetric if (Tx, y) = (x, Ty) for any x, ye~(T) .  A symmetric operator T 
is called self-adjoint if for any yeJ t ' ,  so long as there exists ze J t '  such that 
(Tx, y)  = (x, z) for any x ~ ( T ) ,  then y ~ ( T ) .  

A surjective operator T is called unitary if ~ ( T )  = ~/' and (Tx, Ty)= 
(x, y )  for any x, year ' .  In this case T -~ is also a unitary operator. A self- 
adjoint operator T is called a projection if ~ ( T )  = ~ '  and T 2= T. Now we 
have: 

Proposition 4.9. (1) For any self-adjoint operator T on ~/ ,  T is a self- 
adjoint operator with domain ( ~ ( T ) ) - i n  V (B), which gives a bijective corre- 
spondence between the self-adjoint operators on J /  and the self-adjoint 
operators on J t  ~ in V (~). 

(2) For  any unitary operator T on J / ,  T is a unitary operator on ~7 
in Vta), which gives a bijective correspondence between the unitary operators 
on Jr' and the unitary operators on ~/~ in V tn~. 

(3) For any projection operator T on ~g, ~ is a projection operator on 
in V (a), which gives a bijective correspondence between the projection 

operators on ~a' and the projection operators on ~t 7 in V (n). 
(4) For any projection operator T o n  ~g, the set {xeJ [ [  Tx=x} is an 

A W*-submodule of ~ ' ,  which gives a bijective correspondence between the 
projection operators on Jg and the A W*-submodules of ~ ' .  For any A W*- 
submodule Jff of ~ / w e  write p . r  for the projection operator corresponding 
to Jff. 

Let J / b e  an N0-homogeneous A W*-module over ~r i.e., there exists 
a sequence {Xi};~N of elements of ~t' such that (xi, x~) = 1 for any ieN, 
(xe, x j ) =  0 for i C j ,  and the minimal A W*-submodule containing {X,'}e~N is 
Jg itself. An operator T on ~t' with ~ ( T ) = J g  is called a yon Neumann 
operator if (Tx, x ) > 0  for any x ~ '  and x?(B) (Tx~, xi) converges. In this 

- -  L-~i~N 

case we write Tr T for V (B) /Tx. x~). 
L~i~ N \ t~ 

Proposition 4.10. (1) The definition of a yon Neumann operator on Jr' 
does not depend on the choice of {X;};~N. 

(2) For any yon Neumann operator T on ~ ' ,  T is a yon Neumann 
operator on i T ,  which induces a bijective correspondence between the yon 
Neumann operators of unit trace on J / a n d  the yon Neumann operators of  
unit trace on .,/7 in V ~n~. 

(3) For  any yon Neumann operator T on Jr' and a projection operator 
P on .//,  PT and TP are yon Neumann operators and T r ( P T ) = T r ( T P ) .  

In the above tfieorem we warn the reader that not every yon Neumann 
operator on ~ is of the form ? for a yon Neumann operator T on ~r 
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Let ~r = {aE~la=a*}.  It is easy to see that ~TR stands for the real 
numbers in V tn). Let ~r162 By defining (a~,bj)(a2,b2) = 
(ala2-blb*, alb2+a*bO and (a, b)*=(a*,  -b )  for any (a~, b0, (a~., b2), 
(a, b)e.~CQ, we see that d Q  becomes a ,-ring. ~r and ~r are regarded as 
B-sets in the same way as ~1 is, and ~TR and ~TQ stand for the real and 
quaternion numbers in V ~a), respectively. The notions of an A W*-module 
over ~r and over ~r can be defined as expected. The discussions of this 
section and the following section for A W*-modules over ~ still hold with 
due modifications for A W*-modules over ~ a  and ~r though we deal 
exclusively with the case over ~r A B-QL~r ~e is called standard if it is B- 
orthoisomorphic to Lo~(Jg) for some No-homogeneous A W*-module ~t' 
over ~r ~1, or ~1~. 

5. B-OBSERVABLES AND B-STATES 

Let d be an A W*-algebra whose complete Boolean algebra of projec- 
tions is B and which shall be fixed throughout this section. 

Given two o--complete B-complemented B-lattices L~ a and ~ ' ,  a cr- 
orthohomomorphism of &o into &a, is called a B-tr-orthohomomorphism of 

into 5r if it induces the identity transformation on B. As in Proposition 
3.1, we have the following result. 

Proposition 5.1. For any B-cr-orthohomomorphism ~0 of a o'-complete 
B-orthocomplemented B-lattice ~ into a o--complete B-orthocomplemented 
B-lattice s q3 is a cr-orthohomomorphism of s  5~' in V ~B), which 
gives a bijective correspondence between the B-cr-orthohomomorphisms of 
S" into ~ '  and the cr-orthohomomorphisms of s into ~ '  in V ~). 

Let ~ be a B-QLsr. A B-observable on L: is a B-tr-orthohomomorphism 
of ~(R)  ~a) into ~ ,  where we recall that ~(R)  tB) stands for the Borel sets of 
real numbers in V ~B), and by Propositions 3.1 and 3.3 it is a o--complete B- 
orthocomplemented B-lattice. Then proposition 5.1 gives the following 
result. 

Proposition 5.2. For any B-observable ~0 on s q3 is an observable on 
in V tR), which gives rise to a bijective correspondence between the B- 

observables on L# and the observables on ~ in V ~a~. 

By transferring the spectral theorem for self-adjoint operators to 
V tB), we have the following. 

Theorem 5.3. Let ~ be Lot(rig) for some B-nonzero A W*-module over 
~r Then for any B-observable ~0 on ~ there exists a unique self-adjoint 



Quantum Logics with Continuous Superselection Rules 867 

operator T on ~t' such that 

~p([r, s] (n)) = { x e ~ ( T ) I t ( x ,  x)<_(Tx, x)<_s(x, x)}  for any r, s eR  

with [r, s] (B)= { teR(n) [ r<  t<s in V(B)}, which gives a bijective correspond- 
ence between the B-observables on ~ and the self-adjoint operators on Jr 

Let Ae be a B-QLsr. A B-state on s is a function a of  A a into ~R  
satisfying the following conditions: 

1. 0 < a ( x ) _ < l  for any xe.L,e. 
2. a ( e ^ x ) = e a ( x )  for any e e B  and x e ~ .  
3. a(1) = 1. 
4. For  any orthogonal sequence {x~}i~s of  ~ ,  a(Vi~Nxi) = 

E a(x,). 
It is easy to see that Conditions 2 and 3 imply a(e)=e for any eeB,  since 
a(e) = a(e ^ 1)= ea(1)= e. It is also easy to see the following result. 

Proposition 5.4. For  any B-state a on a B-QLsr s ~ is a state on LT' 
in V (n) which gives a bijective correspondence between the B-states on 
and the states on Z7, in V ~B). 

Let Ae be Loc(~[) for some N0-homogeneous A W*-module over d .  It 
is easy to see that for any von Neumann operator U of  unit trace on ~ ' ,  
at,:JV'e~L~Tr(PJ~U) is a B-state. By transferring Gleason's (1957) 
theorem to V (n), we have the following result. 

Theorem 5.5. U ~-~ a v gives a bijective correspondence between the von 
Neumann operators of  unit trace on J / a n d  the B-states on A a. 
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